
AD-7'4. 829

FM/CW RADAR SIGNALS AND DIGITAL
PROCESSING

Donald E. Barriok

National Ousanlo and Atmospheric
Administration
Boulder, Colorado

July 1973

DISTRIBUTED BY:

No"lu T10whlu m"tl SOMN
U. S. DEPARTMENT OF CMMERCE
5285 Port Royal Road, Spdnlefiltd Va. 22151



ENVIRONMENTAL RESEARCH LABORATORIES

The mis~ion of the Environmental Research Laboratories is to study the ocean , inland
water%, the lower and upper atmosphere, the ipece environment, and the earth, in search of the
undqr~ tandinio nee.ded to provide more useful services in imorovino man's prospects for strvival
as I n luenced by the physical environment, Lahoratories contributing to these studies are:

N~orth i~~ oea La~nr~ pda (00.SL) eismology, Qeomaqnetism, geodesy, and related earth
sciences% earthquake procesges, Internal structure and shape of the earth and aistribution of
the earth's mass.

At lant u' LV\ opmjr'o~h, and Noto *vloU~il Wbortore,'v (AtWL),: Cvtoloov and qeoohysics
of ocean basins, oceanic orocetsss and sea-air interactions (Miami, Florida),

mop~ QceanoohiDo tbtNr'.itorioma k'pol.': Oceanoora~h with emlnhO-t on the or-4
processes and dynamlesi tiunani generation, propaqation, modification, detection, and monitoring
(Seattle, Wahinqon).

Atmephorv'o Phpoiec' md Chomitt Wl-vrtory A'~) Processes of cloud and procipitation
Physics,, chemical composition and nuclea ting substance& isi the lower atmosphere-, and laboratory
and field exptriments toward developing feasible ,nehods of weather hiodification.

Ai~r Ro'o~o t~hmee (ARL). Diffusion, tran~vnort, and dissipation of atmospheric
contavrinants, dcvvin ui motliuds for prediction and control of atiiospheric pollution, geo-
physical monitoring for climatic change (Silver Spring, Maryland).

('00phyeia Fluid In~vrtioa IAIve~apr (SrrIP1J Dynamic, and plhysics of geophysical fluid
systems; development of a toretical basis, through mathematica, Modeli ng and computer simula-
tion, for the behavior and properties of the dtm~oiphere and the o ceans (Princeton, Now Jerley),

Natio'nal 9*e'r* .tomwi". b.or'titry (A'S0f), Tornadoes, squall line%, thunderstorms, and
other severe local convective phenomena directed toward Improved method% of prediction an(;
detection (Norman, Oklahoma).

spaoq' Atnuircni'nt Lahoritorij (Sirt). Solar-terrestriial physics, service and technique
developient in the areas of environmental monitoring and forecasting,

Aeroptmy1 Labo-tory (A0.- Theoretical, laboratoryv, rocket, and satellite studies of
the physical and chemical Processes controlling the ionosphere and exosphere of the earth and
other planets. and of the dynamics of their interections with hinh altitude meteorology.

Nave Pi'paqationi La, ritwry (mr'): Developmt_, of new methods for remote sensinog of
the gohysical environment with special emphasis on optical, microwave and acoustic sensing

Wcathie* Nodtfoat.,v *rm' lffiov (WWfF : Planib and directs ERL weather modification
activities, operats ERJ41crf fleet, and research on cumulu3 cloud modification, on hurricanes

_tcci~vtrppt t her ems, and on hurricane modification.

I' *1 .11NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

By

010, AI., . BOULDER, COLORADO 80302

L 7.0-



A - 77'1 8 ,?

0J, %S, DEPARTMENT OF COMMERCE

A Fredsrick B. Dent, Secretory

~I P NAtIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
Robert M. White, Administrator

1 d oENVIRONMENTAL RESEARCH LABORATORIES
Wilmot N. Hess, Director

NOAA TECHNICAL REPORT ERL 283-WPL 26

FM/CW Radar Signals and Digital Processing

DONALD E. BARRICK
Thio work was sponsored In part by the

Defense Advanced Research Projects Agency

BOULDER, COLO,
July 1973

For %ale by the Superintendent of Documents, U. S. Government Printing Office, Woshlngton, 0. C. 20402

SN S J



NOTICE

The NOAA Environmental Research Laboratories do not approve,
recommend, or endorse any proprietary product or proprietary
material mentioned in this publication. No reference shall
be made to the NOAA Environmental Research Laboratories, or
to this publication furnished by the NOAA Environmental
Research Laboratories, in any advertising or sales promotion
which would indicate or imply that the NOAA Environmental
Research Laboratories approve, recommend, or endorse any
proprietary product or proprietary material mentioned herein,
or which has as its purpose an intent to cause directly or
indirectly the advertised product to be used or purchased
because of this NOAA Environmental Research Laboratories
publication.

I!I



" ,, ,~. . . . . . . . .

TABLE OF CONTENTS

Page

ABSTRACT v

1. OBJECTIVE 1

2. APPLICATION 1

3. TRANSMITTED WAVEFORM 1

4. RECEIVED WAVEFORM 2

5. DECHIRPED SIGNAL 3

6. DOUBLE-FFT DIGITAL PROCESSING 7

7. SINGLE FFT DIGITAL PROCESSING 12

8. NUMBER OF COMPUTER OPERATIONS REQUIRED 16

9. WINDOWING AND WEIGHTING 18

10. RULES FOR SIGNAL DESIGN 19

11. SATISFACTION OF REQUIRED ASSUMPTIONS 20

12. SUMMARY 21

13. REFERENCES 22

iti



ABSTRACT

The use and processing of the FM/CW signal for radar and acoustic
sounder systems are examined in this note. This signal--along with real-
time digital processing via minicomputers--is currently being used by
several groups for HF over-the-horizon radars. A comparative analysis
of the different prccessing techniques for general radar applications
has yet to be undertaken. This note therefore attempts to promulgatc
details of these techniques so that they may find use in other systems.
An example involving an HF backscatter radar is used to permit the reader
to see how the techniques are applied to dn actual problem.

A linearly swept-frequency signal format is used in a 100% duty-
factor mode. In the receiver, a replica of the linear FM signal is mixed
with the received waveform at an offset such that the desired range window
is observed with the lowest possible IF frequency variation. This pulse
train is then analog-to-digital (A/D) converted and ready for computer
processing. Two techniques are described and analyzed for digitally
processing the signal via the Fast-Fourier-Transform (FFT) algorithm.
The first is a double-FFT process; the first FFT set is done within a
pulse-repetition-interval (PRI) to give range information. The next FFT
set is done over N PRIs to give Doppler information. In the second
technique, a single long FFT is used over N PRIs, giving simultaneously
both range and Doppler information. It is shown that both techniques are
identical, in that they produce the same information and require the same
number of computer steps in executing the required FFTs. Both techniques
yield Unanbiguous range and Doppler, for both discrete and distributed
targets; the note shows how and where this information is contained in
the processor output. The note also describes how two weighting functions
are normally applied to the pulse train time samples to reduce objection-
able range and Doppler sidelobes. Finally, simple "cookbook" rules are
given for obtaining the signal and processing parameters based on the radar
and target range/velocity specifications.
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FM/CW RADAR SIGNALS AND DIGITAL PROCESSING

Donald E. Barriuk

1. OBJECTIVE

The objective of this note is to present a simple and concise

analysis--backed by an example--of the application of an FM/CW signal

format in radar systems. It is shown how both time-delay (range) and

Doppler (radial velocity) information can be extracted unambiguously.

2. APPLICATION

For the sake of illustration throughout these notes, we pick the

following application and example. The HF radar car;-ier frequency is to

be 10 MHz. Sea scatter is to be observed from the radar out to a range

of 150 km fcorresponding to time delays up to 1 millisecond in a back-

scatter radar). It is known that HF sea scatter is confined spectrally

to frequencies within about 1/3 Hz of the carrier. Therefore a pulse-

repetition-frequency, fr' of 1 per second is selected so that all echo

Dopplers within + 0.5 Hz of the carrier will be displayed unambiguously.

To show sufficient detail, a Doppler processing resolution better than

0.02 Hz is desired, and a range resolution of the order of 1.5 km is

desired; the latter two requirements in an ordinary pulse-Doppler system

translate to a coherent integration time exceeding 50 seconds and a

signal bandwidth of 100 kHz, respectively,

3. TRANSMITTED WAVEFORM

We select a 100% duty factor signal whose frequency sweeps upward,

linearly, over one pulse-repetition-interval Tr (Tr = 1/fr = 1 sec for

our example). Since a 100 kHz signal bandwidth is desired, the signal

can be written

vT(t) - coslwct + ' Gfrt2 ] cos[OT(t)] (1)

for -Tri2 < t < Tr/2. It is assumed that the signal is periodic, and

hence phase-coherent from one repetition interval to the next.
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Since the instantaneous frequency, fT(t), is the derivative of the
phase, we have

fT(t) -- c d0ft c + Bfrt (2)

where here f* 10 MHz, fr - 1 Hz, and B =100 kHz. Thus it can be

seen that the frequency excursion of fTt over one pulse-repetition

interval is

AfT(t) - B = 100 kHz. (3)

The amplitude of the transmitted signal is taken to be unity. The

plot of signal frequency vs time is shown in figure 1.

4. RECEIVED WAVEFORM

I j f T(t) fRt

IC

f (W f2(t)

Figur'e 1. Frequency ye time of transmitted and delayed/Doppler ahifted
received signal.
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I
The received signal is both delayed in time and shifted in Doppler.

To illustrate the situation, we assume that we have a discrete target at

range 15 km and travelling radially away from the radar at v-5 m/s (e.g.,

an ocean wave). At time t-O, the target is exactly at R0-15 km from tie

radar. After that, its range is a function of time as

R(t) - Ro+vt (4)

The received signal from this discrete target is thus just a replica

of the transmitted signal, but multiplied in amplitude by a factor A

and delayed in position by a factor td, where td - 2R(t)/c. It is thus

vR(t) - AvT(t-td) * Acos[w (t-td)+ Bfr(ttd) ]  ; (5)

its frequency is shown in figure 1 as the dashed curve.

5. DECHIRPED SIGNAL

Now after RF amplification, we mix the received signal with a replics

of the transmitted signal; this is represented mathematically by sub-

tracting a phase OT(t) from T(t-td) to give a signal

vI(t) - APT(t)cos[wc(t-td) - Wct+rTBfr(t-td)z - nBfrt2  . (6)

There is also a sum signal with phase OT(t)+OT(t-td), but it is

near 2w c (twice the carrier), and hence removed by filtering. The function

PT(t) denotes a pulse of unity amplitude and width T, where here,

T - Tr-td .
Thus the mixture of the two sawtooth frequency waveforms and their

subtraction, as shown in figure 1, produces a signal whose frequency

format, fY(t), is as shown in figure 2. The two frequtncies 4re

fl I d ~ ; ' -C~) (7a)

and
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I d
f2 77i R T(t-td) - T(t+Tr)l (7b)

The intermediate, dechirped signal can be represented as the sum

of two pulse trains aF ehown in figure 2. One, v I(t), is at frequency

f I, and the width of these pulses is T - Tr-td* The other, v 2(t), is

at frequency f 2, and the width of the pulses is T-td. It will be

possible to eliminate v (t) by filtering if f >>f ;such will be the
22 1

case here.

2R f f

I Tr t

#"*A 1 /f2 4

Figur'e 2. Frequenoy and wVrpitude plots ve time o.freceived signal after
dechirping.



Therefore, we are left with a single pulse train to analyze, as

represented by equation (6). It is possible to re-certer the time origin

so that it falls in the middle of the first pulse; this is done in

figure 2. The frequency and phase from pulse to pulse are changing very

slightly, however; we will analyze this now.

5.1 -Tr/2 < t < T,/2

Let us simplify the phase in the first pulse; denote internal time,t,

within this pulse as t1 . Using t=t i  and td=2R/c=2Ro/c+2vt/c=to+2vtl/c,

(where to -2R/c is tie initial delay of the signal), we have

*l(ti)i4T(ti-td)-T(ti), or

t2 f!+frt Bfrtolt I
ltl) [-2-nfcto0+Bfrt ] + 2r[-2 c fc+Bfrto T r

2V M~t2

-2nTfr .  (1 -c I " (8)

Thus we have three co-itributions to the phase: a constant, a linear

term in time t i , and a quadratic term in time, t(. For the parameters
of the example, however, the quadratic phase term is always small within

the interval -Tr/2 < ti < Tr!2; e.g., at ti=Tr/2 , it is of the order of

0.005 radian. Also, it can b, showri that the second term in the linear

factor is small compared to the irst term and is also much less than one

radian. Of course, in all cases under consideration here, v/c << 1, i.e.,

target velocity is small compared to propagation velocity. Therefore we have

2Y
i(ti) _ 0-2r r[ T- fc+Bfrtolti (9)

hence within the first pulse, the frequency f, is

f, a2.v fc+Bfrto (10)

As can be seen, this frequency offset (also shown in the preceding

figure) consists of two terms: the first due to the target velocity and

the second due to the time delay (or range) to the target (t0 2R0/cln 1
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millisecond for Ro=15 kin). For the examiple selected here, the second

term (range term) is larger; i.e., !-fc= Hz, Bfrto=10 Hz. Thus

it is not possible to separato range from target velocity by measuring

frequency f, within a aingZe puZee.

5.2 (2n-l)Tr/2 < t < (2n+l)Tr/2

Here we want to examine the phase in the n-th pulse, assuming that

the n=O pulse is the one centered at t=O. Again, we describe the time

within the n-th pulse (from its own center) as ti. The time delay to

the target, td, however is now given by

td = 2R/c = 2Ro/c+2vt/c = to+2v(nTr+ti)/c , (11)

where we describe time to the center of the n-th pulse as nTr. We can

now substitute this into the phase:

4ini) =T(ti-td) - OT(ti) (12)
-. 2v 2
2vt t - nT + Bfr[to+ - (nTr+ti)]

- 2 rBfr[to+ L (nTr+ti)] •

After expansion and elimination of terms which are small cimpared

to others and also small compared to one radian, we have (assume n- 100)

I(ti )  2fc-' c fnTr - 2t[ L fc+Bfrto + L Bn~ti ; (13)

hence the frequency in the n-th pulse is the quantity in square orackets,

i.e.,

f uvfc+Bfrt + L Bn. (14)
ln 'c c ro0 c

Comparison of (14) with (10) shows that the frequency in the n-th

pulse is identical to that in the first pulse, with the exception of the

6



third term. The explanation for the third term Is simpl. It merely
means that the target is moving from pulse to pulse, and Its range at the

center of the n-th pulse is RO+c(2v/c)nTr/2 m Re+vnTr , as we would
expect. Since we want to integrate over as many as 100 pulses, the third

term is not negligible as n increases; e.g., at n-lO0, F Bn I Hz
Two other effects occur within the pulse; its width, being TTr-td

changes very slightly from pulse to pulse. Since Tul second,

td M to+(2v/c)nTr, we have for n-l, T - 1-10 " s; for n-lO0 we have
T - I01-4 1 10" S. Thus the change in pulse width is negligible.

A very important second effect, however, is the change in phase from pulse

to pulse, as represented by the second term in (13). This phase change

shall in fact prove to be the basis for the Doppler processing. As stated

earlier, all of this assumes that the transmitted signal Is phase-coherent,

i.e., *T(t+Tr) -T(t) - non-varying consLant.

6. DOUBLE-FFT DIGITAL PROCESSING

Here we want to demonstrate how a double Fourier-transformation

process can be used--often in real time because of the discovery of the

digital fast-Fourier-transform (F-r) algorithm--to produce a time-delay

(range) and Doppler (velocity) display of the radar target data*. The

first Fourier transform process is performed over a pulse repetition

period, Tr (i.e., within a pulse) to obt-in target range. The second

Fourier transform is then performed over several pulses of these data to

obtain target Doppler or velocity.

First, let us perform a Fourier transform on a single pulse. This

is shown in figure 3. We have a pulse of width T = Tr-td , amplitude A,

and frequency f, given by (14). To perform this Fourier transform
digitally, one must sample the pulse M times within the time period
Tr. The number M depends upon the maximum value f, can assume, and

M/Tr must be at least twice this value, i.e., 2fl.x , according to the

Nyquist theorem. For the problem considered earlier where we want to

*This technique is currently being used by the Stanford Research Institute
for recl--time processing of HF ionospheric radar signals at their Wide
Aperture Research Facility (WARF); (Sweeney, et aZ., 1971).
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dtspl possible termes at all rages frm aero to 160 km, this ~lofld5

to a frVqVncy variation in f from 0 to 100 Hi hence I must be

gweater then MOO since Trl sec. Since VFT !cassors r5Vequir that

"Pik, whe, k is an Intver Not"E Would suffices

vIOtM %.afp, *1 I/T

I In

14- T

PigW. 3. Si~fZ. puts*. OW its Pok'ie~r *N.'X~

The Fourier transform of the pulse is then

T/2 -1i2ff?
v1I(f uf Alcos*1n(tint it

4/2

or -T1

S1n[2t(f+fln)T/ 2)]+1$012iyfc" P" nTr * (15)
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This Fourior transform is show in figure 3, Sinn we started with
*IfibuTr samples (HolOO minimum), we obtain eamples in the freuency
domain from -tie" to +fI%"# i.. 0at 14/let IM Y, positive values ot fre-
quency, These samples are complex in 1,nea as evidenced by the exponential
phase factor containing *6 and 10~ nT1. I Thus we conceptually have
M/1 ran"e bins (M/10lOO here), permitting ut to realize the 151 km range
resolution over a 150 km window, as initiolly stipulated. Note that each
N/a resolution element after tho first FF1' can be consideMe a range bin
so long as the Doppler terms (Iv/c)fco Is small compared to the range
term, Bfrtgj this is true for the example considered here. Since each
pulse is approimately 1/1 wide at the half-power point (To Tr a I5c
here), we should be able to resolve 100 targets in range because the width
of each FF1' pulse in this 100 Ha window is 1 Hs. Hance after one FFT
process within a pulse we have range information, but no Doppler infov'mtioni
we turn now to extraction of Doppler.

Note that If we start with the first pulse at nul and do this FF'
process on each pulse, we obtain a Fourier transform n times, where we
ar~sume n~s N (somt upper value). Since the frequency, fin and phase,

2Wf J nTr. shifts slightly from pulse to pulse due to thrget velocity
(as given In (14)), this slrla/40 pulse in the frequency domain will change
very slightly after each Fourier transformation. Since our digital FF1'
iU capable of producing numbers at M/2 discrete points, (18) should really

be written with f replaced by i - #1f,. where -M/2.sMN/2.
Thus the first FF1' process on M samples within a pulie gives M/2

range bins for each pulse. For each successive pulse, this FF1' gives M4/2
additional positive frequency samples. Digitally, we store each M4/2
samples In rows of a matrix, as shown in figure 4, until we have N rows.
Thus, we have an 1/2-by-N matrix whose columns so far represent range
bins.

Now, we perform another FF1' over each column, or range bin. This
will require N points altogether. Each matrix element is a complex
number whose value changes In a column because the frequency, f , and
the phase, 2wfce 4 nT,,, are changing from sweep to sweep. Snce each
of the N vertical elements comes from a different pulse Tr Sac apart,

9



NT, sec are required to fill this matrix, Also, n can be related to tim from

the first pulse by use Cf te"T r, or n.t/Tr (aglin, 14 nt N). Hence each

col1o is really a function of time, end the N column elements can be
considered (digital) samples of this tin function,

To Fourier transform over a typical column (say the m-th), let us

again refer to our example for the target at R1,06 kmi this target

will appear in the mlO bin for K/2100, As we saw before, this produces
fin . 10 . 0" aM. Thus for n running from I to 100--

corresponding to tim running between I and 100 seconds--two things happen

to the positive pulse in the
m-th range bin t its li - . R g

tude changes slightly due to 4.- Range Pins -.

the shift of the sinW/v S S i In S 10

pulse because of fil andisSm , , s . SmX,
its phase changes. The S t* Sam A/
amplitude variation from nl
to n-lO0 is slow. For the

example given, the shift n

the pulse due to In Hi S Sna n/a
in 3

over N-l0 pulsesi the 3 dB

width of the sinx/x pulse i,
I/Tl Hz while the total $ s . Sf.. SM/

width between the first nulls
Is 2/12 Hz. Hence the Figgure . Matrix oontaning nmg@-DoppZer

amplitude variation within a nwb.r. obtainad ith double-

column is slight, and can be

represented in most cases by a constant or, for more accuracy, by a constant

plus a small linearly varying term; the 'esults will not differ signi-

ficantly for either case. Hence we represent the amplitude by a constant

(i.e. sin[2(f-flN/2 )T/2]/[2w(f-flN/2)T/2], its value midway down the

column where n=N/2) and leave the second representation as an exercise

to the interested reader.

Thus the only variation now within the column (at the positive

frequency corresponding to m) is the phase factor, i.e.,

10



s * a K(f)o i # KMO 'itfc  tn & where (16)

in the rightmost expressions nTr has been replaced by t n  to represent the

disrete flow of time from pulse to pulse. The Fourier transform of this

quantity over tn from 0 to NTr is

m KNTr, ,hr2 where (7
sRnr(f, fc)NTr/1]

here again we should note that our digitAl FFT does not really give a
continuous variation over f (frequency), but will compute values at N
discrete frequency points. The question arises as to how we should choose

these N frequency points, i.e., how wide a frequency window do we want

to display. Since our PRFs fr(fr-1 Hz here) results in an unambiguous

Doppler of I. Hz, we would logically select " 1 Hz here) so

as to display all of the unambiguous Doppler window, Then the frequency

window In Doppler will be from "fD., to +fDma at a spacing fr.,,/N,

which turns out to every 2fwex/N Hz. or 1/100 Hz here. Note also in

(16) that If 4t fc, i.e., the Doppler shift, exceeds 2 fr-l/ZTr then

from pulse to pulse we will be sampling at iess than the required Nyquist

sampling rate. Hence our pulse-repetition frequency (PRF), fr, must

always be at Least twice as great as the maximum expected Doppler frequency.

Observe now an important fact in (17): the displacement of the

sinz/x pulse resulting from the second Fourier transformation over the
m f . This is precisely the Doppler shift that resultscolumns occurs at T

from a target at (radia) velocity v with a backscatter radar having

carrier frequency fc' Furthermore, the 3 dB width of the pulse represented

by (17) is l/NTr Hz, as shown in figure 5. Thus we produce N (or 100)

Doppler frequency points every fr/N Hz (or .01 Hz here) having a Doppler

resolution of lI/NTr Hz (- .' Hz hero). Since NTr is the coherent

integration time (in this scheme, it is the time required to fill the

matrix), l/NTr is exactly the Doppler resolution one would expect from

any coherent pulse-Doppler radar.

11



'.'.. .. -N.r ,

Theefore, in sum % we have done two sets of MFTs. One set
within each pulse it N nts to give N/2 range binst these bins
an the elements of a raw of a matrix, The second set is over N, pulses,
or over the N column elements of the matrixt to give N Doppler bins
for each range bin. Note that the original target rings also containod
a small offset due to Doppler. If this offset is objectionable, It can
now be rtmoved--in the case of a discrete target--by using the Doppa
information to correct the target range

A little thought
will show that this

process also work~s j I /NT.
for distributed tar-

gets such as rain or

sea waves, If one
has many targets In
a range bin (say L f
targets), he has L D=mof

terms in (15), and

each element in the

matrix is really Figure 5. Doppler epeotrwun after sooond trans-
the sum of L such om on wthin a given range bin.

terms. The second

FFT over the columns, therefore by superposition, gives L terms in (17);

if each of the L scatterers in the bin (representing the distributed

target complex) has a different velocity, then the resulting Doppler
spectrum for the L ..rgets will consist of L-sinx/x pulses at different

positions, as given by (17) and shown in figure 5. Thus a continuous

Doppler spectrum represented by the sum of L scatterers with many differ-

ent velocities and scattering amplitudes will result, as would be expected

in any coherent pulse-Doppler radar system.

7. SINGLE-FFT DIGITAL PROCESSING

Now we examine another technique for extracting range and Doppler

information from the same signal. This involves a single, long FFT over

12



the some N pulses. This vachnique is used by the Rome Air Development
Center for same of Its HF over-the-horison radars (Eddy, 1973). It

Involves the same number of computer operations as that described In the
preceding section.

Here we will drew heavily on much of the material in the preceding
section. Since we have a maximum frequency f, In our pulse Tr(sT)
seconds long, wc rcqurs Mt42f 1U., Tr samples per pulse, as before.
Performing the FFT over N pulses gives a total of M x N samples per

transform. Let us analytically find an expression for the Fourier trans-
form of this pulse train first. To do this, we can use superposition to
express the Fourier transform of the pulse train as the Fourier transform
of each pulse as though it were all alone:

V Nf) ,T MVn(tle"i2Wft dt . (18)
nwO

(m-I)Tr/2

Here we reexpress the phase *In(tt) appearing in VIn--as given
in (13)--ln terms of continuous time, t, rather than time within a pulse,

ti. This is done by substituting tit-nTt into (13) to give

(t)  01 + 2w(Bto+ 2 BfnTr]n'2w[ 2v f +Bf to+ 2v enlt. (19)

Using this in (18) and performing the indicated integration, we

obtain (with the approximation Tr oT)

VIMf) X1 VIn(f)e'2ifnTr .(20)

where Vzn(f) Is given in (15) an discussed in that section

Now, to perform the summation, we make the same assumptions as
before; i.e., that of both the amplitude and phase variations over n

which occur in V1,(f), only the phase variation is Important. Also

we use only the first sinx/x function in (15) since it represents positive

13
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frequencies; an Identical result obtains for the second term representing

the negative frequencies, Therefore, (20) becomes
K-1 2

V1(f). K(f)F e-12i(f- f c)nTr (21)

where we have used (16). The above summation can be performed by using

the identity:

Neina e N/2 sn[(N+l)2] 
(22)no sln[ot/2 12

Thus we obtain

VI -n 2 vf-_r)NTr/'2]1 e-i2r(f- - fc)(N-)Tr/2 (23)Vi(f) - K(f) sine2(23)
sin[2 (f- r-fc)Tr/2]

In the above final result the complex exponential factor--as well

as the residual phase factor eI 0 contained in K(f)--is not important

because it has unity amplitude. However we note that the sinNx/sinx is

much like the sinNx/Nx function. It contains a peak at x-O and side-

lobes away from the peak; it is, however, periodic whereas sinNx/Nx is

* not.

Now, we note that the FFT does not actually compute a continuous

function, F(f), but a transform at MN positive and negative frequency

points. Since the maximum frequency, fuix, is determined primarily by

the maximum target range desired, we have MN/2 positive frequency points,

and hence a value of VI(f) computed every f = 2f m../(MN) Hz along the

positive frequency axis.

To see how a discrete target will appear, we plot first in figure 6

the broad function representing the integration over a single pulse, i.e.,

si n[2rr(f-f N 2 T/2 J
K(f) [2(ffIN/2)T/2] (24)Kf [27r(ff iN/2 )T/2]

This gives the range bin, or location of the target in rang-. Its center

is slightly displaced, however, due to the Doppler term L fc in fiN/2
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of the broader function, corresponding to fr l/Tr Hz (i.e., a 1.5 km

bin here), while the Doppler resolution is essentially the width of the

narrower line, corresponding to l/NTr Hz, the coherent integration time.
The frequency axis after the long FFT can thus be broken up into

M/2 coarse range bins of width lI/Tr Hz; within each range bin, finer
frequency divisions then correspond to the Doppler spectrum of the target.

In particular, there are N Doppler bins per range bin, corresponding to

a Doppler resolution of l/NTr Hz. It seems proper therefore to center

each range bin on a zero-Doppler line. The centers of each range bin--

as shown in figure 6--are thus located at mfr(multiples of the PRF) along

the frequency axis, and extend + fr/2 away from this central, zero-

Doppler position. Thus we can take the plot along the positive frequency

axis and divide it into M/2 pieces, each centered at mfr where

0 < m < M/2. Each piece then represents the Doppler spectrum of an indi-

vidual range bin. Or, we can have the computer do the "dividing" for us,

displaying each range bin however we choose. For example, range bi.ns

could be lined up behind each other, closely spaced, to give a 3-dimension-

al range-Doppler-intensity display. Note also that each range bin--and

the resulting Doppler spectrum thus obtained--is similar to the Fourier

)..transform over a given column in the preceding section; both are range
bins containing a Doppler spectrum -0th the same resolution and width.

THEREFORE THE TWO PROCESSING TECHNIQUES YIELD IDENTICAL RESULTS.

A little thought will also show that this technique will work for

distributed targets. For example, if we have many targets over several

range bins but at the same velocity, we will effectively have several

K(f) functions in (23), but centered on slightly different positions.

The sinNx/sinx functions for the Doppler will be identical. Thus in effect
the target at a given Doppler will appear in several range bins, as it

should, but at the same discrete velocity in each.

8. NUMBER OF COMPUTER OPERATIONS REQUIRED

The possibility exists with present day computers--especially
"minic.rauters" of the NOVA and HP 2110/2115 variety--that the range-

Doppler processing described above can be done in real time. Such

processing for HF radars has in fact been done digitally in real time by

16
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several groups for both discrete targets and sea scatter, using no more

than a single HP 2115 minicomputer. To ascertain whether such is possible

for a given application, we must know the number and size of the digital

words to be stored and processed per second.

The FFT process is known to require Llog2L operations for a linear

array of L numbers. Let us first analyze the total number of operations

required by the double FFT. We first do an FFT on a pulse, using M

sawples; this requires Mlog2M operations. Next we begin transforming

over each of the M/2 columns; each now contains a real and imaginary

word for a total of M words. With N elements in a column, Nlog2N

operations are required for the FFT on each column. For M column words,

this gives MNlogN operations. Thus the sum of operations required in

the first and second sets of FFT processing is

MN1og2M + MNlog12 N = MN(log2M + log2N) - MNlog12MN (25)

operations.

The number of operations required in the single long FFT is simple

to calculate. With N pulses and M samples per pulse, we have MN

total samples per transform. This therefore requires MNlog2 N operations.

THIS IS IDENTICALLY THE SAME NUMBER AS FOR THE DOUBLE FFT!

Normally the FFT requires that the number of samples to be transformed

be an integer power of 2. For the double FFT process therefore, both

M and N must be powers of 2 (e.g.. 256 and 128, 32 and 64, etc.; just

so M and N Individually are greater than the number required by the

sampling rate and Doppler resolution). For the single, long FFT, the

product MN must be a power of two, and hence again M and N must

individually be powers of two.

In both cases, MN elements must be accumulated and stored for

processing; this dictates the size of the required core and/or disc

storage. The entire number of MNlog MN operations must be performed

every NTr seconds if the process Is to be done Its real time. This

requires that (Mlog2MN)/T r computer operations per second be done (not

Including time for buffering and display functions). Thus the obvious

way to reduce the requiried data rate--if such is necessary--is to lower

M, the number of range bins. Since M is equal to 2fiTmTr, we must

17
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reduce f1,.o the maximum IF frequency per pulse. This does not
necessarily require one to reduce the range resolution. For example,
suppose for our example that instead of observing all ranges from 0 to

150 km with a 1.5 km resolution (giving M-200), we decided that we only
wanted to observe the window between 126 km and 150 km, but still with
1.5 km resolution. This gives conceptually M132 or M/2-16 range bins.
To achieve this, one merely slides the linear sweep delay in the receiver
so that instead of varying between 84 and f max=100 Hz, f now runs

between 0 and f :16 Hz. Then the M=32 samples are adequate for
imaxthe Tr=1 cecond pulse repetition interval.

Finally, the number of bits required per word also affects the data
rate to some extent. The processor dynamic range depends upon the bits

per word because of quantization error. Thus the dynamic range is optimally

6b decibels, where b is the number of (biiary) bits per word. Currently

about 80 dB dynamic range can be realized by digital processors without
too much difficulty, requiring 14 bit words and a 14-bit A/D convertor.

9. WINDOWING AND WEIGHTING

*In all of the preceding sections, we assumed a square pulse at

frequency f,, and N such pulses all with the same amplitude. As a result

we arrived at sinx/x and sinNx/sinx functions in the frequency domain
for the target echoes. Joth functions have rather high, objectionable
sidelobes: the first sidelobe of the sinx/x function is only 13 dB down
from the main lobe, while the average sidelobe level of the sinNx/sinx
function between main lobes is only down 20 dB. Thus some of the side-

lobes from a single target--as illustrated in figure 6--are quite high

and could be mistaken for other targets.

The remedy for this is the same as that taken by antenna designers
to reduce sidelobes: use an amplitude taper across the original function
before Fourier transforming. This technique is currently being used in

nearly all radar digital processing schemes. The common amplitude
taper--or weighting--used across the time window is the Taylor weight
(although Hamming and cosine-squared weights (Blackman,1958; Nathanson,

1969) are sometimes used). This results in average sidelobes down 40-50 dB

18



below the main lobe. The only bad effects of such weight.ng are the slight

broadening of the main lobe (by as much as 40% in some cases at the 3-dB

point) and a drop of 1-2 dB in signal-to-noise ratio due to attenuation of

the original received signal at the edges of the window.

For both types of processing described above, two weighting functions

are normally performed digitally. The first is to weight the M samples

within the pulse according to the selected function (e.g., Taylor weight-

ing). The next is to weight the N pulses to be used in the coherent
integration by the selected technique. Both weighting processes across
the two respective windows of Tr and NTr seconds are normally required

to keep both the range and Doppler sidelobes unobjectionable.

10. RULES FOR SIGNAL DESIGN

Here we give a simple, stepwise procedure for calculating the signal

parameters required for a given set of backscatter radar or sounder specifi-

cations. We assume that the following parameters describing the system are

given: (i) fc, the carrier frequency, in Hertz; () R, the range

window width to be calculated and displayed, in meters; (iii) vM, the

maximum target velocity in m/s; (iv) AR, the range resolution desired,

in meters; (v) Av, the velocity resolution desired, in m/s.

With these parameters given, the following four steps are to be used

to calculate the following four FM/CW signal and processing parameters:

() B, the signal bandwidth, or frequency excursion, in Hertz; (ii) Tr,

the pulse repetition interval, in seconds; (iii) N, the number of pulses

of period Tr needed for a single coherent processing operation; and

(iv) M, the number of samples needed per pulse interval, Tr.

(1) B - c/(2AR), where c is the wave propagation velocity in the

medium.

(2) Tr - 1/fr, where fr a 2fl , fiM being the maximum target

Doppler shift, given by flM - (2vM/c)fc.

(3) N a Tc/Tr, where Tc, the total coherent integration time is

the reciprocal of the desired Doppler resolution, AfD, where

AfO D (2Av/c)fc.
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(4) M a 2Rw/AR samples per pulse interval, Tr.
In the above, we have assumed that fc' Rw, VM9 AR, and Av were

all given and that B, Tr, N, and M were to be found. In practice, the

size of the computer and data handling rate will often limit M and N.

Thus one usually iterates until an acceptable compromise is achieved, i.e.,

he varies his requirements for R, AR, and Av untlel values of M and

N are obtained within the tapacity of his machine.

11. SATISFACTION OF REQUIRED ASSUMPTIONS

In the course of the analysis herein, certain assumptions were made,

upon which the desired output is dependent. If these are not satisfied,

quadratic and other types of distortions will result which reduce or limit

the achievable signal-to-noise ratio. Having derived B, Tr M, and N

from the rules of the preceding sections, one can quickly check thE follow-

ing critiria to see whether the optimum processing gain will be realized.

(1) BTr(vr/c)2N2 < 1,

B(2vM/c)(2RW/c)N << 1,

B(2vM/c)Tr/4 << 1

Satisfaction of the above conditions was assumed in going from (12)

to (13) for the phase; if one or more of these conditions are not

satisfied, distortion will reduce the achievable processing gain.

(2) vMNTr < AR.

This merely means that the target is not traveling so fast that it

moves through several range bins within one coherent integration period,

NTr* If the inequality fails, it simply means that the echo will appear

in several range bins, but with a proportionately reduced amplitude in

each.

(3) dv/dt NTr < Av.

20
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This assumption--heretofore unmentionad--concerns the rate of

change of radial target velocity (or radial acceleration), It his been

assumed throughout the analysis that the targets under consideration have

a constant, nonaccelerating velocity. Small radial accelerations can be

tolerated, but if dv/dt is sufficiently large that the above Inequality

fails, then the echo will appear spread into several Doppler bins with

proportionately reduced amplitude in each.

12. SUMMARY

Despite statements often seen concerning "chirp" (ie., linearly

swept frequency) signals used with microwave radars, ther ie no conbigt

between target range and velocity for processing done n the straight-

forward digtael manner described pr thss note* Furthermore, two seemingly

different digital processing schemes are described and analyzed herein,

which will produce exactly the same pulse-Doppler (range-velocity) output.

Both employ the FFT; the first uses a shorter FFT many times, while the

second uses only one long FFT to produce the same coherent pulse-Doppler

map. Both techniques work equally well for discrete targets (such as an

aircraft), as well as for continuous or distributed target complexes

(such as ocean waves, rain, atmospheric tu'.bulence, etc.), and display the

targets in their appropriate range-velocity perspective.

Identically the same total number of FFT operations is required for

both techniques; the same data rate (A/D convertor rate) is required in

each case also, i.e., (2Rw/AR)x2x(2vM/c)fc words per second. Here, Rw

is the range window length to be examined, AR is the range resolution

desired, vM is the maximum target velocity to be encountered, c is the
free space wave propagation velocity, and fc is the carrier frequency.

The choice of whether to use the multiple vs the single FFT processing

technique then rests with the availability of appropriate equipment. For

*Perhaps the ambiguity occurring in the microwave systema is attributable

to the analog pulse compression techniques commonly employed there, such
as the dispersive delay line. Here -the technique used is more pruperly
described as a coherent correlator followed by pulse-Doppler processing,
rather than time-domain pulse compression. The difference betwepn the
two techniques results in the elimination of the ambiguity for type of
proce'sing described here.

21

,. , . f, f , l a .. - . .... t. . . ... . . . . -.. .



examples small computers may L4 limited in the size of a tingle FFT they
can handisi In this cases the multiple FFT technique having smaller
unit site may be requiredl On the other hand, special hard-wired FFT
computers are currently available (called "PFT boxes"), The&# can perform

* a fairly large, fixed-length transform very rapidly because of their
* specialited constructions and are used al one component In the overall

digital processing system, Here, the single long FF1 is usually more

efficient be~iuse the need for continual, Interactive storage/rttrieval
of elements in matrix/fashion demanded by the multiple FFT scheme is
eliminated.
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